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Upper Bound on the Decay of Correlations 
in the Plane Rotator Model with 
Long-Range Random Interaction 
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We give an upper bound on the decay of correlation function for the plane 
rotator model with Hamiltonian 

1 V Jxy cos(0x - 0y) 
2 ~y [ x - y l  ~3/z+~)a 

in dimension d = 1 and d = 2 when (Jxy) are independent random variables with 
mean zero. 

KEY WORDS: Random interaction; random variables; long range; spin glass. 

1. INTRODUCTION 

This paper is a continuation of an earlier work where we proved the absence 
of breakdown of symmetry for classical xy spin glass model in two 
dimensions with long-range interaction in a region where the corresponding 
ferromagnetic model has a spontaneous magnetization. Here we give an 
upper bound on the decay of the two-point correlation function. In the 
nonrandom case, when there is no spontaneous magnetization, upper bounds 
were already given by Fisher and Jasnow, (2) McBryan and Spencer, (3) 
Schlossman, (4) Bonato, Klein, and Perez, (5) Ito, (6) and Messager, Miracle- 
Sole, and Ruiz. (7) 

Let us remark that in Refs. 3 and 6 it was assumed that the 
Hamiltonian is reflection positive [8] in order to compare the decay of the 
two-point correlation function with the large distance behavior of a lattice 
Green function. 
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In the case of a spin glass model the Hamiltonian does not have this 
property. In Ref. 7 Messager et al. do not use the reflection positivity and 
obtain the best results in all cases where the spontaneous magnetization is 
known to be zero, e.g., Pfister. (9) Their theorems are always true in the spin 
glass case as long as the decay of the potential is strong enough and the 
coupling constant Jxy are bounded random variables. However, their theorem 
cannot be applied in the case considered in Ref. 1. Moreover, we are able to 
treat the case where the' coupling constants J~y are unbounded random 
variables with some mild restrictions on the moments of order l >/3. Similar 
restrictions was imposed by Khanin and Sinai. (1~ This is a nontriviaI 
improvement of Ref. 1 where only the case of bounded sub-Gaussian random 
variables was considered. We also treat the one-dimensional case, since 
Khanin m) asserted without giving a proof that there is no phase transition 
almost surely. We give an upper bound on the decay of the two-point 
correlation function for this model. 

2. DESCRIPTION OF THE MODELS, MAIN RESULTS, AND STRATEGY 
OF THE PROOFS 

We consider the classical xy spin glass model in one and two 
dimensions. 

Let A be a finite subset of 2~ a we define 

v Jx, COs(o -o,) (2.1) 
xe~_A YeZU\lxl IX__ y1(3/2+ e)d 

where in (2.1) each spin Ox takes its values in the torus. We assume that 
(Jxy)(x,y)ezza are independent identically distributed random variables 
satisfying the following conditions: 

~- (Jxy )  = 0 

= a 2 

G 2 

<<.p! T H for some fixed H ~ ~ + 

Let us denote by ( ) ( J )  the expectation with respect to any Gibbs state 
corresponding to the Hamiltonian 2.1. 

The main results of this paper are the following theorems. 

Theorem 2.1. If d =  1 and if fl is large enough then there exists a 
constant K,(~) > 0 such that 

- ( 1-~ l~176176 ~<--K~(fl)] = 1 (2.2) 
% 

Prob 
\ L -~  log L / 
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Theorem 2.2. If d =  2 and if fl is large enough then there exists a 
constant K',(fl) > 0 such that 

Prob kL-oo [ ~ l~ Kc~176 0 i ) ) 1 ~  ~< -K'~(fl)] : 1 (2.3) 

where ~ = 1 - e l  for some e 1 arbitrary small but nonzero. 

Romorks. (I)  Theorem 2.2 can be formulated as follows: Let s be the 
set of random bounds (Jxy){x, r), z' and/1 the corresponding measure on .(2. If 
fl is large enough, then one can find a constant K'~ and a subset s of s with 
/~(.O0) = 0 in such a way that the following proprty is true: for any e 2 > 0, 
any J E  s there exists a constant L 0 = Lo(J, e2) such that 

Kcos(00 -- 0LI)(J)] ~ exp -- (K'~(8) + e2)(log L) y 

for all 

L ~> L0(J, e2). 

(2.4) 

(2) In the case e = 1/2, Theorem 2.2 gives e x p -  (K/fl)(logL) 1-~1 for 
arbitrary small el, as upper bound, which is better than the upper bound in 
the ferromagnetic case which is derived in Ref. 7, namely, 
exp -- (K/fl) log log L. 

The proof is based on the McBryan-Spencer technics (3) using an idea of 
Messager et al. (7) for the choice of complex translation. Let us first recall the 
following proposition of McBryan and Spencer. {3~ 

Proposition 2.3. Let A(L) be a square box centered at the origin of 
side 2L + 1 and let L denote also the point of the x 1 axis with x 1 = L. For a 
given family of real numbers {ax} indexed by xCA(L)  the following 
inequality holds: 

I(cos(00 -- 0L)) (8,2-)1 ~ exp l - ( a~  -- a0) 

Jx, 
+ f l m a x [ [  ]x_y,(3/z+,)a cos(Ox-O,)[cosh(ax-a,)-l] ] 

x~A(L)  

We refer the reader to Ref. 3 for the proof of this proposition. See also 
Ref. 6, p. 752. 
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The good choice for a x is 

L 1 
Ctx~-alxl=K(fl) ~ r ( log+r) l_y  if Ixl<~L 

r=lxl (2.6) 

a x = 0 if Ixl > L 

where Ixl=max(Ix2), IXal) and log + r=max(1 ,1 o g r ) .  K(B) and y are 
constants which will be chosen later. It is easy to see that a L - a 0 ~  
[K(f l ) /1--y]( logL) r if ~ > O. Therefore it is sufficient to choose 7 [resp. 
K(//)] in such a way that 

J~y cos (0~-0y)  { c o s h ( a ~ - a y ) -  1 t (2.7) 
m U A(J,~,Y) (logL), ~ ~ - ~ ~  

x ~ A  L 

is bounded, almost surely as L ~  oo, by a constant f(y, fl) [resp. 
K(fl) - f ( 7 ,  fl) >~ K,(fl) for fl large enough] in order to prove Theorem 2.2. 

Let us denote 

AH I 0(A2) O(A 2) 

Jxy cos(0 x - 0y)[cosh(a x - a y ) - l ]  
= ~ I x -  yl ~3:2+~'d x e A i  

y ~ A 2  
x ~ y  

(2.8) 

then 

A ( s ,  ~ , ~ )  = - -  fl rnoaxl2AH(O(A(L)), O(A(L))) + AH(O(A(L)), O(AC(L)))I 
(log L) ~' 

(2.9) 

Since the proofs of Theorems 2.1 and 2.2 are long we decompose them in 
four steps. Let us explain the strategy which is based on summation by 
blocks as in Ref. 1 but with more computational complexity. 

Step 1. We consider in 2.9 the term AH(O(A(L)), O(AC(LZ))). If the 
random variables Jxy are bounded by 3" we can bound AH(O(A(L), 
O(AC(LZ))) uniformly with respect to J and 0 by JL -2~a using only the decay 
of the potential. If the random varaibles are unbounded we use the following 
inequality: 

IJxyJ 
IAH(O(A(L)),O(A~(L2)))t<, ~ i x _  yl3+2 ~ {cosh(ax)-- 1} (2.10) 

x e A ( L )  
y e A e ( L  2) 
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Therefore 

(IJx, I E(I~i))./ {cosh(a~) -- 1} IAH(O(A), 0(AC))l ~< ~=~a 

y~Ae(L 2) 

E(lJxyl)lcosh(ax) - 1} (2.11) 
+ Z I x - y t  ~+~ x~A(L)  

y~AC(L 2) 

as we will see in Step 2 it is sufficient to consider the case K(fl) < 1. 
Then we prove the following lemma: 

kemma 2.4. For any K(fl) < 1, 

(i) lim S '  E(IJxYl) {cosh(a~)-  11 (2.12) 
~ o  ~ I x -  yl 3§ 

yEAC(L 2) 

(IJxYl- E(lJxrl)) {cosh(a~)-  1 t 0 (ii) lim ~ ~-x---- y] ~3 + 2 ~-----7 = 
L--,m xeA(L)  

y e a ~(L 2) almost surely (2.13) 

Remark. It is crucial that the set .O 0 of measure zero where 2.13 is 
not true does not depend on the spin configuration ~. If  D o would depend on 
0 the nondenumerable reunion (.9 o.O0(0 ) could be of measure 1. 

Step 2. We consider the term AH(O(A(L)), O(A(L2)\A(2L))). This is 
the first intermediate region. If we use an inequality similar to (2.11), this 
sum~ 

~-(IJ~Yl) /cosha~ 1} 
i x 7  y13~-V2~ -- 

.x~A(L) 
yEA(L2)\A(2L) 

goes to infinity with L. To solve this problem we discretize cos (0~-  0y) (not 
the 0~ as in Ref. 1) in the following way: Since c o s ( 0 ~ - 0 y ) =  
cos(0~) cos(0y) + sin 0 x sin 0r and ]cos 0~1E [0 1], we can perform a dyadic 
expansion of cos 0~ : 

cosOx=ao(Ox) ( ~ ~ )  (2.14) 

where r~(O~) = 0 or 1 and o0(0x) = sign(cos 0x). Defining gK(Ox) = 
2rK(0x)-  1 if K ~> 1 ff0(0x)= 1, we get 

[1 j 
cos 0~-- o0(00 5- + ~ ~(Ox) 2~ +------- i - (2.15) 

K=I 
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If we set eK(Ox) = ~o(0~) d~(O~) we get 

o0 G,c(0x) 
cos 0x = Xp K=0 2'r (2.16) 

For an integer M, we define cos {v) 0 x =  Y~= 0 [eK(0x)/2x*l].  We consider 
in AH(O(A(L)), O(A(La)~A(2L))) only the terms corresponding to 
cos t)~ cos 0y since the terms with the sine are treated in the same way for 
simplicity we call these terms AH(O(A(L)), O(A(L2)~(2L))) and let 
AH{M)(O(A(L), O(A(LZ)\A(2L))) be the same terms with cos 0~ replaced by 
COS M O. 

It is straightforward that 

1 IJxY] 1] (2.17) ]AH--AH(M)I<~ 2~ t ~ [x_yt~3+2~ ) [ cosha~- -  
x~A(L)  

y~A(L2)\A(2L)  

Denoting AH(A(L),A(L2)~,/I(2L),IJ]) the sum in the right-hand side of 
2.17) we get 

IAH(O(A(L )), g(A(L Z)~4(ZL ) ))] 

~I--I~ AH(A(L ), A(L E)~A(ZL ), tJ ' - ~:(IJ])) 
Z"" 

that 
Lemma 2.5.  

1 + ~--~-AH(A(L), A(L2)~e'I(2L), E(LJI)) 

+ IAH~'(O(A(L), O(A(L2)~v4(2L)) t (2.18) 

There exists a choice of M as function of L and d such 

(i) L-~olim @g-AH(A(L),A(LZ)~v4(2L), E(IJI)) = o (2.19) 

(ii) L~oolim 21-~ AH(A(L ) A(L Z)~A(2L ), ]JI -- F_(IJI) ) = 0  

almost surely 

(iii) if K(,8) < d,/z_~ with 0 < c~ < e 

Prob \L-~oo ( lim max ]AH'M'(O(A(L)), O(A(L2)~A(2L)))= O) 

(2.20) 

= 1 (2.21) 

Therefore AH(O(A(L), O(A(L2)~/I(2L))) goes to zero as L goes to infinity 
uniformly with respect to 0 and almost surely with respect to J. 
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Step 3. We consider the term AH(O(A(L), O(A(2L))). Let us remark 
that if we used the inequality (2.1l) then the term 

V 
xEA(L) 

yEA(2L)\[x} 

 (ISx, I) 
I x _  y[(3+2~) , {c~ ay)-- 1} 

goes to infinity with L. Therefore we use a discretization as in Step 2. 
First we subdivide A(2L)X,/I(L) and A(L) into concentric crowns as 

follows: 
For any integer L, there exists a unique integer m(L) such that 2 m(L) 

L < 2 m(r)+a. We write m instead of m(L) when there is no danger of 
confusion. If X is a real number let IX] be its integer part. For any integer 
K/> 1 and a n y j E  1,2,..., [L2 -m+K] - 1 --ctK(L ) -  I let 

~K+I  = {X ~ Z 2/2m--X(j -- 1) < Ixl ~ 2m-Kj} 

\ ~ 1 ~K+I  
~ K + I  = A L \  jU = �9 ~ ar(L) 

1 

I f j  E aK(L ) + 1,..., 2air(L) -- 1, let 

Wff+a= {x r Z2/L + (j-- 1 + aK(L))2 m-x < L + (j-- a~:(L))2 m-K} 

and 

l 
l 2O~K(L) -- 1 

~K+I  = / ( 2 L )  A ( L )  U ~ ; + 1  f 
2ag(L) 1 j = o~x(L) + 1 

Let us remark that the width of ~r+l~,,(L)J' = ax(L ) + 1 and CC/~+12t~K(L ) is less than 
2 m-K+1 and no less than 2 m-K. The reason of such decomposition will 
become clear in the sequel. Roughly speaking for a given m and K, except 

~K+a and ~ r + a  the width of the crowns ga~+~ is for the two crowns --a,,(L) ~2ax(L), 
constant (and equal to 2 m-K) i f L  increases from 2 m to 2 r e + l -  1. In Ref. 1 
we allow the width of these crowns to increase with L. Here the number of 
crowns ~ + 1  increase with L. According to this decomposition AH(O(A (L)), 
O(A(2L)) can be written 

AH(a(A (L)), e(a (2L))) 
O:K(k) K + 1 

= Z A H (  O ( ~ K + I ) '  0(~K+I))  -]- 2AH(0(~f~'Y+I) , 0(~+11))  + Z Rp 
j=l p=2 

(2.22) 
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where for a given p > 2, Rp denotes 

OCp-l(L) Olp-z(L) 

R e =  ~ 2AH(O(~),O(g~ ~ 2AH(O(~j-1),O(~'~j+2) 
j = l  j = l  

+ 2AH(O(~f% 2(L)), 0(Wf,~o_2+,)) (2.23) 

where the last term in (2.23) occurs only if %_  1 is odd: 

oaf(L) a2(L) 

RE = • 2 2AH(O(ga~) , O(C~)) 
j = l  K = j + 2  

In this step we consider only ~p=2 Rp. We first discretize the cosine as 
in Step 2. With self-explaining notations we get 

K 

R (J, cos 0) 
p = 2  

K K 

= V' Rp(J, cos M 0) + ~ [Rp(J, cos 0) - Rp(S, cos u 0)] (2.24) 
p = 2  p = 2  

It is straightforward that the modulus of the last sum in (2.24) does not 
exceed 

K 

1 v R (ISt- E(IJI)) + T  p== 2~t 
p ~ 2  p = 2  

(2.25) 

where Rp(lJI) is nothing byt Rp(J, cos 0) with Jxy replaced by tJ~yl and cos 0 
replaced by 1. 

We prove the following lemma" 

I .emma 2.6. There exists a choice of M as function of L:  K =  
[logzL ] -- [log 2 log2[logzL]] where log z is the logarithm to the base 2, such 
that 

1 1 K 
(i) lim ~ Rp(E(IJI) ) = 0 (2.26) 

L-~oo (logL)~ 244 p=Z 

1 1 K 
(ii) lim ~ Rp(IJI- E(IJI)) = 0 almost surely (2.27) 

L - ~  ( logL)  y 2 ~t p=2 

(iii) Prob max ~ Rv(J, cos ~M) O) = 0 = 1 (2.28) 
0CamEL)) ( logL)  r v=2 t 

Part (iii) is the most complicated of this paper and is rather different from 
the Step 3 of Ref. 1. The main difference is the following: In Ref. 1 we prove 
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some probability estimates which can be used until the width of the crown is 
0 (log L). After that we estimate the remainder terms uniformly with respect 
to J and 0. Here, even if the random variables J are bounded, such a uniform 
estimate is useful only if this width is 0 (log log L). In this step we improve 
the probability estimates of Ref. 1 in order that they can be used if the width 
of crowns is 0 (log log L). This was done by using a different discretization 
of the cosine and by estimating the distribution of the random variable 
maxo(dH(O(~+l), 0(c~+1))) without subdividing the crowns c~+1 into 
small squares as in Ref. 1. These two facts are rather technical but are 
crucial. Moreover this improvement does not give directly the almost sure 
convergence of (log L)-rmaxo(a(zL))[Y~= 2 Rp(J, cos M 0)1 to zero but merely 
the convergence in probability. We get almost sure convergence when K(L) 
is such that the width of the smallest crown is O(logL). To solve this 
problem we used a method which is very standard in probability theory: 
First we prove that, for a convenient subsequence Ln, L , - ~ ,  with 
probability 1, /~2(L,) 

lim 1 ] max ~ Ri M' = 0 (2.29) 
n-~ (logLn)r 0(A(ZL,)) R=K,(L.) 

where KI(L,) [resp. KE(L,)] is such that the width of crowns is O(log L, )  
[resp. O(log log L,)].  Seconddly we prove that the whole sequence is 
arbitrary near this subsequence, i.e., with probability 1: 

1 K2(Ln+I) K2(L) 

max max ~ RR - ~ RR 
Zm<L<L,+a (1OgLn) ~ 0(a(2L,+l)) p=KI~L,+~) p=K~(r) 

is arbitrary small, infinitly often. 
This last fact is proven by using an adaptation of the Chung lemma, (13) 

which is equivalent (see Lemma 2.3) to prove an analog of the Skorokhod 
maximal inequality. (14) 

Step 4. In this step we consider the first two sums in (2.22), calling 
them AHK(J, cos 0). 

Using 
[AH,,(J, cos 0)l ~< AH,,(E(IJI) ) + AH,,(IJ I -- E(IJI)) (2.30) 

we prove the following: 

I.emma 2.7. If K 2 =  [ l o g 2 L ] -  [log2 log2[logzL]], 

1 
(i) lim IAHK2(IJI- E(IJI) I  = 0 almost surely (2.31) 

L-~oo (log L) 7 

1 
(ii) lira AHK2(E(IJI) = 0 for suitable choice of K(fl) (2.32) 

L-~  (log L) ~ 



498 Picco 

Here also the proof of (2.31) is based on an analog of the Chung lemma. (13) 
The reason is the following: With our hypothesis on random variables it can 
be proved that 

Prob(IAHK(LJ I -- E(IJ[) I ~> fi(log L)  ~) ~ ct exp [-c(log t)7~] 

but since y is strictly smaller than one we cannot use directly the Borel- 
Cantelli lemma. On the other hand if J are sub-Gaussian random variables it 
is easy to see that 

P r o b ( I A H r ( I J  [ - E([J[)]/> ~(log L)  r) ~< c' exp [-c~2(log L) 2 ~] 

and we can use the Borel Cantelli lemma. 
The analog of the Chung lemma allows us to prove Lemma 2.7 in the 

whole generality of our hypothesis. This is the main difference with Step 4 of 
Ref. 1 where we proved only analog of 2.32. 

R e m a r k .  In Step 3, even if the random variable J was sub-Gaussian 
we need to use the analog of the Chung lemma. Mainly because in Step 3 we 
prove that it is equivalent to consider random variables which are sub- 
Gaussian or satisfy our hypothesis. In Step 4 this is not the case. 

3. PROOF OF THE PREVIOUS LEMMA 

We denote by C a constant which may be different from time to time. 

Step 1 

P r o o f  o f  L e m m a  2.4.  Par t  (i). Since E(J 2) = t7 2 we get E(]JI )~  a. If 
B.  = {x E Z2/Ix[ = n} it is straightforward that 

1 
Ix - yl 3+2~4 cj(q)-Z-2 ~ (3.1) 

xEBj,yEBq+j 

Using a(y)  = 0  if lYl > L  we get 

E(IJ~Yl) {cosh(a(x)) -  1} Z tx-7?v2  XEA(L) 
yEAe(L 2) 

co j tcosh a( j )  - 11 (3.2) 

The estimate exp a ( j )  <~ (L / j )  K~) exp K(fl) implies that the right-hand side of 
(3.2) does not exceed eaL  -4~ if K(fl) < 2. This proves (2.12). 



Plane Rotator Model with Long-Range Interactions 499 

Part (ii). Let AH(A(L),AC(L2), JJ l -  E(IJI)) be 

(IJxyl - E(lJxyl))  tcosh(a(x)) - 1 t (3.3) 
x c a ( L )  I x - -  f 1 3 + 2 ~  

y~Ac(L  2) 

by similar computations we get: if K(fl) < 1 

E(AH(A(L), Ac(Z Z), I J [ -  E(IJI)) = ~ ccrZZ--6--4e 

The Tchebychev inequality implies 

CG 2 
Prob(IAH(A(L), A~(L2), ]g' - 7_(IJIl~ el) ~< - -~-L-6-4 '  (3.4) 

Since the series with general term L -6-4e is summable the first Borel 
Cantelli lemma implies 2.13. 

Step 2 

Proof of Lemma 2.5 part (i) and (ii), (i) By similar computations it is 
straightforward that 

AH(A(L ), A(L Z)\A(2L ), ~(IJI) ~< acL ' -  2~ (3.5) 

if K(fl) < 2 and e < 1/2, if K(fl) < 2 and e = 1/2 the right-hand side of (3.5) 
have to be replaced by gel Therefore if we choose M =  [log2L] we get 
(2.19). 

(ii) It is straightforward that if K(fl) < 1 

E(AH(A(L), A(L2)~(2L),  IJ I -  E(rJI)) 2 ~< a2cL-2-4, (3.6) 

The Tchebychev inequality and the first Borel Cantelti lemma imply (2.20). 
The proof of Lemma 2.5 part (iii) is based on the following exponential 

estimates for the distribution of sums of independent random variables 
(JK)~=I which satisfy 

(7 2 
~(Jk) = 0, 7_(J~) = o~., E(JP)<~p!Z~-H p-: 

for some fixed H ~ fR + see Ref. 12. 
= n = n j Bernstein Inequality. Let D~ z ~K=I a~, then if S,  Y~K=~ K 

Prob( lgn l~2xD,)~2exp( -x  z) if 0 < x ~ <  D,  
2M 

(x) 
Prob(iS,] >/2xD,) ~< 2 exp - ~-~ 

(3.7) 

O n 
if x > 2----M (3.8) 
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Let us remark that i f J  K are sub-Gaussian random variables (3.7) is true 
for any X > 0. With our hypothesis on random variables J we have to be 
very careful in our summation by blocks if we want to be in a region where 
(3.7) can be used. 

We subdivide A(L z) in square of side 2L. Accoding to this subdivision 
AH(M)(O(A(L)), O(A(LZ)X,/I(2L))) can be written 

A/-VM'(0(A (Z)), O(A,)) 
Ai=A(L2)\A(2L) 

(3.9) 

Let us remark that the number of terms in the previous sum does not exceed 
L 2 . 

We estimate the distribution of AH(M)(O(A(L)), O(Ai) ) by using the 
following lemma which is an adaptation of Lemma 1 of Ref. 10. 

I .emma 3.1. Oct Z~ be the center of Aj and 3 a constant 0 < & < 1/2. 
If K(fl) ~< 1 - 23 then there two constants e, e '  such that for any/2 E ]0, 1 [ 

/ 
Prob 130(A(L)), O(A3/IAI-I(M)(O(A(L)), 0(A3) I >~U - -  

[-I2 L 2 + 48 
~< c'  exp -- ~c 

L 3+2'~ 

7 

(3.10) 

Proof of Lemma 3.1. AH(M)(O(A(L)), O(Ai) ) is equal to 

Jxy [ ~  er(Ox) ][ ~ ~ ? l { c o s h a ( x )  - 
Ix-:  3+z  0 2K+l K'=0 

yEAi 

If we perform the product [~=0] [~ ,~ ,=0 ]  we get 

AH ~M~ = 
AHK,K, 

K,K'=O~ 2K +K '+2  

1} (3.11) 

(3.12) 

This is the sum of ( M +  1) 2 strongly dependent random variable AHr,K,. 
Given (K, K ' )  E {0 ..... M} • {0 ..... M} and O(A(L)), 0(Ai) a configuration of 
spins, if x E A(L) and y ~ A i we define the random variable: 

Jxy {cosha(x)-l}[zi[3+2~ (3.13) 
~(x,y) ix_-~3+2 ,~,,(Ox)a,,,(O,) L,,~ 

It is easy to see that E(I~Pl)~ cpE(IjIp); therefore r/satisfies the conditions 
of the Bernstein inequality with some constant H '  = cH. 
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Let D 2 be the variance of Y~x~A~Z),y~a~r/(x, y). Using c o s h X - 1  >/ 
X2/2, we get 

eL 2 D 2 ~ ~  O'2 E (7/(X) 4 
xEA(L) 

>1 L ~_ ~ , ,~  S~ 1 - -~ j = J  L(log~ K) 1-~' K(fl)  4 

cK4([~) G2L 4 2K(/3)(log L) 4(1-- y) (3.14) 

Moreover, it is straightforward that 

D 2 <~ eL 4-2K(~) exp 2K(fl) if K(fl) < 1 (3.15) 

Let us choose X in the Bernstein inequality as 

L3+2~ 
X =/~ 2DLm~) 

Using (3.14) we get X~< ~/2)  cLL+26(logL) 20-y) and D >/ 
e'L2-~(~)(log L) -z(l-~). Therefore if K(fl) < 1 -2c5 and L is big enough we 
get X ~ D / 4 H  for any fixed H. Therefore we can use (3.7). Using (3.15) we 
obtain x>~(~/2V/c)L~+2a and (3.7) leads to the following: for any 
(K, K') C {0,..., M} • {0,..., M} 

L3+23 ~ ( J/'/2 t 2+ 4~ ~ 
Prob ([AHK,K, I >/p t 2 ~  l ~ 2 exp \ -4ee  ] (3.16) 

Now since the number of random variables we can obtain from AHK, K, by 
changing crK(0~) er,(Oy ) does not exceed 22L~ we get 

gL 3+ z~ ] 
Prob (30(A(L )), O(A,)/JAH~,K, I >~ ~ / 

At z 
2+4a] e' (3.17) ~222L2exp (--~r L / ~ exp ( -/~2L2+46)8cc 

If we use the fact that 

t 30(A(L )), O(Ai)/IAH(M)(O(A(L )), O(Ai))l 

K, ~=0 
(3.18) 
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is contained in 

~ l L3+Za 1 1 ~) 30(A(L)),O(Ai)/IAH~,.,,,I>~// iz,  13+2~ 2K+K,+2 (3.19) 
K , K  ~ =0 

(as it can be easily checked by taking the complement) we get 

L3+2~s ~) 
Prob (30(A(L )), O(Ai)/IAH(M)(O(A(L )), 0(Ai) [ >/4// lzil3+ 2 

( //2L2+46~ C' ( //2 L2+4~ ~< ( M +  1) 2 exp -- ~< exp (3.20) / / \ 

the last inequality in (3.20) comes from M = 0 (log L). 

Remark. This is at this point that the discretization of cos 0 x instead 
of 0 x is crucial: we need a lower bound on the covariance if we want to use 
(3.7). Moreover we obtain a better estimate than in Ref. 1. 

We can pove Lemma 2.5, part (iii). 
Using similar statements as (3 .23 )c  (3.24) or Lemma 3.3 of Ref. 1 we 

get: 

Vrob (~O(A(L )), O(A(L Z)~A(2L ) )/IAH~M)(O(A(L )), O(A(L 2)~A(2L ))I 

>/ 4uL 3+ 2~ ~_i( izill3+ 2, ) 

r L2 + 4,s c" -- ~< c '2L 2 exp -- ~ ~< exp ~ / (3.21) 

because there is no more than L 2 boxes A i in A(L2)~v4(2L ). Now by a 
simple scaling 

1 C 
~. 1Z,13+2~ ~< (L)3+~ (3.22) 

(in order that Therefore if we choose 0 < 6 < e and L large enough 
L*-~c ~< 1) we get 

Prob(30(A (L)), O(A (L z)~l (2L )/AH (M) ) //) 

//2 L 2+4'~ 
~< c' exp -- -~c  (3.23) 

which together with the first Borel Cantelli lemma implies (2.21). 
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Step 3 

We prove the result only for the first sum in (2.23). The second sum is 
treated in the same way. 

Proof of Lemma 2.6. (i) Letting p E 1, 2 ..... K and j ~ 1, 2,..., ap(L) 
we consider 

A L I ( • p + I  ~ p + l  
- - , - - j  , "~j+2,E(lJr ) )  

E({JxYl) { c o s h ( a ( x ) -  a ( y ) ) -  1} 

@ p+l 
Y gai+2 

(3.24) 

Assume 2 ~j<<. ap(L) -- 3. Using (3.1) we get 

AHI~p+I ffap+l , '~j , ~ j + 2 ,  E(rJI)) 
j2m P (J+2)2m-p {eosh[a(q) -- a(K)] -- 1 } 

~< ca ~ q S" (K - -  q ) 2 +  2e 
q = ( j  1)2m-p+ 1 K =  (,]+ 1)2m-P+ 1 

(3.25) 

On the other hand, 

(K -- q) 
l a(q) -- a(K)l ~ K(fl) q(log q ) l - r  (3.26) 

Since in (3.25) q~> ( j -  1)2 m-p + 1 and K ~  ( j +  2)2 m p the right-hand 
side of (3.26) does not exceed [1 + 3 / ( j - 1 ) ]K( f l ) .  Therefore for some 
constant e 1 

(K -- q)2 
{cosh[a(q) -- a(K)] - 1} < c1K2(t ~) q 2 ( l o g  q)2(1- 7) (3.27) 

Inserting (3.27) in (3.25) we get 

(3.25) ~ ccr2K2(fl)(2m-p) ~ -2e 
j2m -P 1 

v (3.28) A..... 
q = ( j _ l ) 2 m _ P + l  q(log q)2(l y) 

If ap(L) -- 2 <~ j ~ ap(L) - 1 it is straight forward that the same result is true 
up to a multiplicative constant, for j = am(L ) the sum in (3.28) runs from 
(ap(L) - 1)2 " - p  + 1 to L. I f j  = 1 we remark that 

l a(q) - a(K)l ~ K(fl) l log 
(K + 2 m-p+1) 1 t 

q ~ t (3.29) q q(log q ) l -~  
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which follows by comparison with an integral. Using (3.29) 
straightforward that 

AH(~f+I, ~ + 2 ,  E(Ij[) ) 4 ac(2m-p)l-2~exp K(/3) 

it is 

(3.30) 

(3.30) together with (3.28) leads to 

Otp(L) L 1 
~__ AH(WV+E, Wp+2j+2, E(JJ})) ~ oc(2m-') '-2~ '~ 
j=l j= 1 q(log +q)2(l- y~ 

Hence 
K 

p=2 
Rp(~-(IJI)) ~ crc(2m) ' -26(Iog L )  2y- '  

If we choose M =  [log2L ] we get (2.26). 
We prove Lemma 2.6, part (ii): 
By similar computations we get 

(3.31) 

+', j + 2 , -  IJI ( l i b  
j2~ p 1 

<r 2 m - p ) - 4 e  ~ ,  q3(log+ q)4U-~) if2<j<ap(L)- 1 (3.32) 
q = (j-- 1)2 m -P+ 1 

L 1 
c ' a z ( 2 r n - P )  - 4 "  Z q3(log+ q)4(1-r) if j=ap(L) (3.33) 

q = (o~p(L) -- 1)2 m-/7 + 1 

c"r -2-4~ if j =  1 (3.34) 

Therefore 

E(R~(Ijt _ E(IjI) ) ~< a2e(2,~-p) 4~ (3.35) 

The Tchebychev inequality leads to 

Prob (log L) ~ 2 M =2Rp(tJI--E(IJI))~/el 

a2c 1 r 1 
~< 

a](I~ 2~ 22M p'~=2 (2m-P) 4e 
(3.36) 

Since 22M ~ c , L  2 K c , , K ( 2 K - m ) 4 e  ~ p = 2 ( 2 m - p ) - 4 e ~  and  by construction 
K K m = O(log L), the first Borel Cantelli lemma implies (2.27). In order to 
prove Lemma 2.6, part (iii) we need the following lemma, which is an 
improvement of Lemma 11.5 of Ref. 1. 
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Lemma 3.2. For any 3>0, e~]O, 1] 
such that if K(fl)/y < 1 then 

where 

there exist constants 

Prob(30(c~f + '), O(C~ y+2~ )/I AH(M' ( O( ~ y + '), O(C~ i + z p+ i,, 

>~ e,(z-m+P)-Z(~-a)fj(2'~ P)) 

fj(2 m-p) = [max(l, j - -  1)(log+(1 + ( j -  1)2m-')2(1-')] - '  

5 0 5  

C, C ~, 

(3.37) 

Proof  o f  Lemma 3,2. W e a s s u m e j < ~ a ; ( L ) - - 3 .  
As in the beginning of the proof of Lemma 3.1 for any given 

configuration of spins O(c~y+l), O(@:~P+I'~t j+2 ), AH(M)(O(cbaf+2), O(@z~P:21)) can  be 
written 

K,K'=O 2 x + K ' + 2  " ~ J  , " ~ j + 2 )  

For any { K , K ' } ~ { 0  ..... M} • {0,..., M} if O(C~f+'), 0((~;++21) is a 
configuration of spin and x E ~ f + l ,  y C c~p+* j+2 are lattice sites we define the 
following random variable: 

Jxy 
~l(x, y) = Ix - yl 3+ 2'aK(Ox) ax'(Oy){c~ - a(y)]  - 1} gj(2 m-p) 

where 

l(2 
m-P) l+2e-K(i3)/y if j =  1 

g j ( 2  m - P )  = 
( j - -  1)3/2(2~-P)'+2'{log[1 + ( j - -  1)2m-;]} 2o-y) 

Using i f j  ~> 2, 

l a(x) - a(y)l <~ K(f l ) ( j  -- I ) -  1[log 1 + ( j  -- 1) 2 m-p]7-, 

(3.38) 

i f j ~ 2  

(3.39) 

(3.40) 

(3.41) 

i f j =  1, 

{a(x) --a(y)l  ~ K(fl) + K(fl) log 3.2 m-p 
7 

822/36/3-4d4 
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it is easy to check that 

c 14~1 
It/( x, Y)t ~< (max(i , - )7  1) )1 /2  ( 2 m - P )  2 (3.42) 

this estimate together with the hypothesis on random variable J leads to 

t 2 [cosh(a(x) -- a(y)) -- 1] z 
E(exp ttl(x, y)) ~ 1 + o 2 ~-  g)(2 m-p) [ ~ - ~ ~  

~-~ max(l,  j - -  1 ) 1 / 2 ( 2 m - P )  2 
1=3 

(3.43) 
If 

(max(l ,  j - 1)1/2(2 m-p)2) 
t < (3.44) 

2Hc 

the series into the last brackets does not exceed 2. Therefore if (3.44) occurs 

l cosh(a(x)-a(Y)) - 112 E(exp ttl(x, y)) ~ exp tEcrEg~(2 m-p) -(-~-- ~ (3.45) 

Using the fact that for different values of x, y r/(x, y) are independent and by 
some straightforward calculations we get the following: 

If (3.44) occurs, 

E (expt  ~ r/(x, y))~<exptEcr2c~ (3.46) 
XE ~3P. +1 
yE ~#'P+ 1 

j+2 

where, for some constants c, c', 

cj=c if j ) 2  

e 1 ~ C'(2m-P) -2K(~)/7 if j = 1 

If we set t = "c/gj(2 m-p) and we used the fact that 

We get 

1 
AHK'K' g](2m-p) x.y2 rl(x, Y) 

T 20" 2Cj 
[E(exp z'AHK.K, ) < exp g~(2m_p ) (3.47) 
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if 

z" < gj(2m p) (max(l ,  j -- 1))1~2(2m-p) 2 
2Me 

The Markov inequality leads to 

Prob(AHK, x, >~ glfj(2m-P)(2m-P) -2(e-a) ) 

exp t--re1 
T2Cj(7 2 

(2rn-p)2(~-6) + g2(2m-P) I 

We choose 

r = ~Hc &(2m-p)(max(l'J - 1))'/2 h j (2" -P)  

where 

(3.48) 

(3.49) 

hi(2 re_p)= 12 m-;  if j / > 2  
f(2m-P) l+l~(~)/:J if j =  1 

M AHI<K , 
K,K'=0 2K+K'+2 

M =  [log2L ] = m(L) and similar argument as ( 3 . 2 3 ) c  (3.24), we get II.38. 

Using now the fact that 

It is straightforward that (3.48) occurs if K(/3)/y ~ 1. On the other hand 
some easy computations show that the right-hand side of  (3.49) does not 
exceed c' exp [ - e  ~(max(1, j - 1))(2 m-p) 2 + 2~ ]/4Hc if 2 m -p is large enough. 

Since if we change OK(0x) eK,(0y ) we can obtain no more than 
exp(8j + 8)(2m-;)  2 log 2 different random variables AHK,K,, we get 

Prob(q0(C~f + '), O(~P++21)/AHK,K , > g,fj(2m-P)(2m-') -2(e-a)) 
g2 "__ 

~ e '  exp l(8i+8)(2m-p)21og2--~HcmaX(1,y 1)(2rn-p)2+2's I 

(3.50) 

If m is large enough, since p ~< m - [log 2 log 2 mJ, m - p goes to infinity with 
m, the right-hand side of (3.50) does not exceed 

g~ �9 l))(2m-p)2+2a c" exp - ~ (max(l ,  d -- 
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If ap(L)--2<~j<~%(L) each step of the previous proofs can be 
checked with some trivial change of constants c, c' and e~ become e15 for 
some constant s independent of p. 

The proof of Lemma 2.6, part, (iii) was done in two parts: in the first 
part we consider the term 

1 KI(L) 
V' Rp 

(log L) r p=2 
where KI(L ) = [logzL ] - [log2[log2L]] (3.51) 

In the second part we consider separately 

1 K ~ )  ( Otp_ 1 (L) 
AH(M)(O(~), 0(c~y+2)) (3.52) 

/~L-- ( logL) ~ 0=~1(K)+1 j=,~p-l(z,)-2 

and 

1 K2(L) 
(log L) ~ ~ Rp --/~L (3.53) 

p=Kl (L )+  l 

where K2(L ) = [ l o g z L ] -  [log 2 log2[lOgEL]]. Let us remark that K I ( L  ) and 
K2(L ) are constant if 2 m ~<L ~< 2 m+l - 1. 

First Part. With the help of an argument similar to (3.28) c (3.19) (or 
Lemma 11.3 of Ref. 1) and the two following estimates: 

o~p I(L) 
(1) 

J=l 

(2) 

[ m a x ( 1 , j -  1)]-l[log+(1 + ( j - -  1)2m-~ -:(l-y) 

<~ c(log L)- l+2r  log log L 

exp - -  (2m-P) 2+26 max(1 , j - -  1) 
j=l  

~< r exp - @ (2m-p) 2§ 

(3.54) 

(3.55) 

Lemma 3.2 leads to 

( / fR.l JoglogL ) 
Prob 30(A(2L)) (log L) -------v ~> ~ (log L) 1- ~(2m-~) 2"-') 

e(log 2rn)2 exp [--~ (2m-p)2+ 2a ] (3.56) 
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Using one more time a similar argument to (3 .18)c  (3.19) and the two 
following estimates: 

KI(L) 
(i) ~ (2 m p)-2(e-~) ~ c(2m-Kl(L))-z(e-6) 

p=2 

(ii) ~ exp - - - ( 2 m - p )  2+2~ ~ c l o g L e x p  
/)=2 

inequality (3.56) leads to 

// /KI(L) 

Prob [30(A(2L))/p~=2 

(3.57) 

l - e-~~z ([l~ L ])z + 2a I (3"58) e 

(log log L) R p  

(logL) ~/> el (logL)l-7+z(~-a) 

I 2 1 ~< c'(log L) 3 exp - e l  ([log z L])  2+z~ 
C 

If m is large enough 
log log L 

(logL)l_7+z(~_a) ~< 1 

(3.59) 

The first Borel Cantelli lemma and (3.59) leads to 

lim 1 K~) L-,~ (log L) 7 max R/) = 0 almost surely 
O(A(2L)) p=2 

We prove the second part. 
Let us first remark that we cannot use directly estimates (3.56) because 

it can be checked that 
[ / K2(L) \ 

Prob (30(A(2L))/ ~ Rp>/el(logL) 
I P  =KI(L) 

and the series with general term the right-hand side of (3.60) is not 
summable. On the other hand (3.60) implies that 

1 K2(L) 
lira max ~ Rp = 0 in probablity (3.61) 
L-~ (logL)70(A(ZL)) P = K I ( L  ) 

Moreover of we consider the subsequence L m = 2 m (3.60) together with the 
first Borel Cantelli lemma leads to 

1 K2(2m) 

lim (log 2m) r max ~ Rp = 0 (3.62) 
m~oo O(A(2m)) p=Kl(2m) 
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almost surely. Since the width of the crown c ~  ,L) changes when L varies 
between 2 m and 2 m+l we consider the terms (3:'52) which contain all the 
terms where P ~,~(L) occurs. 

Using (3.37), the fact that K2(L ) - K~(L) ~ c(log L) and 
(ap(L) - 2)2 m-p >/eL for some constant 0 < c < 1 i fp  ~ K~(L), K2(L ) it is 
straightforward that 

Prob(20(A(2L ))/RL >/el) 

/~1 + 2 8  ~< c'(log L)  3 exp - - ~ -  (L)(2m-P) ~ 

(3.63) 

if L is large enough, which together with the first Borel Cantelli lemma leads 
to 

lim max /~L = 0 almost surely 
L --* oO 0(A2L ) 

We consider (3.53). Let IRp=R,--Y~.~=-~I~L',L, 2AH(O(CC~f), 0(c~L2)). We 
- fi-~ - i  h oul lm 1 that 361 prove an adaptation of the Chung theorem wh c w d " p y ( . ) 

and (3.62) lead to 

1 K2(L)  

lim max ~ /~p = 0 almost surely (3.64) 
L-~oo (1ogL) ~ O(A(2L)) P = K I ( L  ) 

Let us explain the strategy of the proof: Let KI(L) and K2(L ) be as 
before. Let K, K'  C {0,..., M} • {0,..., M} and O(A(2L)) a given configuration 
of spins. We define the following: 

(i) AL(aK,eK,)= (logL) ~ ~ RR(~oK,)>Ie I (3.65) 
p = K  1 

where/~p(eK, oK) corresponds to a given configuration of aK(0x) aK,(0y); 

(ii) AL(K,K') = U AL(aK, a~') (3.66) 

where the union runs over all the possible configurations of o K , oK,; 

M 

(iii) AL= ~ AL(K,K' ) (3.67) 
K,K~=O 
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We want to prove 

lim P r o b ( ( . )  A L ) = 0  (3.68) 
L O -~ CX3 L >/ L 0 

We can assume L o = 2 "~ S i n c e  UL>LoAL can 
oo ~//2~+'-lAL}, we get L J  m = ' ,  0 1 k .JL=2m 

be written 

Prob a L ~ ~ Prob (_) A L (3.69) 
L > L  0 m = P o  L = 2  m 

2 r e + l -  1 A Therefore if we can prove that Prob(OL=v, L) is the general term of a 
summable series we get (3.68). 

Let us first remark that M(L) = [log 2 L] is constant and equal to m if 
L E I m = [2 m, .... 2 m+l -- 1]. Therefore it is straightforward that 

t  0'l I 5=0 7; P r O b z = 2  m ,K,~K,_oAI.(K,K ') )<~ ~ P r o b (  (9 IAL(K,K')) (3.70) 

On the other hand if 2m~L<L'~2m+l--1 then R',{aK,aK,}(L' ) -  
/~',{aK, aK,}(L ) and /~v{a~, aK,}(L), t~p{O~;, aK,}(L -- 1) . . .  R',{OKOK,}(2 m) 
are independent random variables. This follows from the fact that 
/~',{aK,a~c,}(L ) and /~',{ox, oK,}(L') are sums of independent random 
variables indexed by a family of crowns of width 2 m-',-1 and since L '  > L 
the summation runs over more terms in R',{aK,z~,}(L' ) then in 
R',{aK,aK,}(L ). The following lemma is an analog of the Skorokhod 
maximal inequality. r 

Lemma 3.3. Let 0 < e 1 ~< 1 be an arbitrary real number. Le t j  be an 
integer 1 ~ j ~< 2 m - i. 

If 

B/{~, , ,  % } )  = 

CA{oK, 0,,,}) = 

K2 

Z RA~ G,,,}( 2m + J) - 
", = K  1 

el(lOg 2m)Y I 

K2 ~ 1 ~' R',{OK,OK,}(2 m + j )  /> 2e,(log 2m) y 
P = K I  

K2 I 

~. _Rv{oK, oK,}(2 m+' -- 1) 
p = K  1 

a+= f~ •+({o,,,o,,4), C;= U c;({o,,,~,,,}) 
{oK,,TK,I {OK,OK,] 
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then 

P r o b (  U A2m+I-I{GK'6K'}) 
[oK, a~ ,I 

( ) (:3' inf Prob(/3j) Prob >/ 
l<J< 2m-I j= 

(3.71) 

Proof of Lemma 3.2. B y  the triangle inequality we get, for any 
j C {1, 2,..., 2m -- 1}, 

A2m+,_I({~TK,OK,})DBj({GK,GK,})(-'~Cj({GK, GK,}) (3.72)  

Therefore 
2m--I 

A2m+I-I(K,K')D U (JBj(")Cj) (3.73) 
j=l  

Since we have seen that Bj({a~,a~:,}) and Cj{aK,aK,)Cj_,{ax,aK, } ... 
C~{a~, aK, } are independent events, it is straightforward that B/ and Cj, 
dj_~ .... , C~ are independent events. Therefore if we set C0 = r B0 = r we get 
the following chain of inequalities 

Prob(A2m+x_l(K, K'))  ~> Prob 

2m--1 ( 
= 2 Prob (~jnd/) 

j=l 

2m--1 ( 
>/ 2 Prob (/~jn ei) 

j= l  

.= j 1 

j-1 ) 
N (B. n c . )  c 

n=O 
j--a ) 
N (Cn) r 

n=O 

= ~'  Vrob(/~j) Prob n (c . )  ~ 
j= l  n=0 

>/(l<ji~fm_lPr~176 

[by (3.74)] (3.74) 

(by independence) 

and this proves Lemma 3.3. 
Now we can prove 3.64: Since Prob(B~) does not exceed 

Prob ~{aK,OK'} ~ Rp{aX,el~'}(2m + j )~  el (l~ 2m) 
p=K2 2 

+ P r o b  ~{aK,aK, } ~ /~p{a~c, aK,}(2 m + l - 1 ) ) ~ l ( l o g 2  m) 
p=K1 2 

(3.75) 
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(3.60) leads to the following: for a n y j E  1,..., 2 m -  1, 

_ _  2 2m]) 2+2a {:1 (2[log 2 log 2 Prob(Bj) ~> 1 - c exp -~- (3.76) 

if m is large enough. 
Therefore Lemma 3.3 

enough: 
and (3.60), (3.70), (3.76) lead to if m is large 

( 2m~_~ - 1 2 
Prob , L-2m_ AL ~< e" exp - ~  (2flog 2 log 2 2m]) 2+2a (3.77) 

Since the right hand side of (3.78) is the general term of summable series, we 
get the result. 

Step 4 

Proof  of  L o m m a  2.7. Part (ii). Using (3.1) and the analog to (3.26), 
it is not difficult to check that 

1 aCK2(L) 

(log L)  ~ j='--~2 
�9 ~ j q ~ l  ' E(IJ1)) (3.78) 

does not exceed c(log log L )  2~-1(log L )  ~- 1 which goes to zero when L goes 
to infinity if 1 -- y > 0. 

On the other hand, 

(log L)  7 
AT_I[~K2+ I ~ K 2 +  1 ~_) 

2 m --K 2 2 m --K2 + t 1 

<~ca( l~  s=i ~ s t=s+l~ ( t _ s ) 2 + 2  ~ { c o s h ( a ( t ) - a ( s ) ) -  l} 

(3.79) 
~ 2  m K2+l  ~ 2 m - K 2 + l  , The sum z..,t=s+l can be written 2s ~ t=~+l  + z_,~=2~+1, if s +  1 <.t<~2s it is 

straightforward that 

[a(t) -- a(s)[ ~< 2K(fl)(log s) r-1 (3.80) 

and therefore {cosh(a(t) -- a(s)) - 1 } <~ e(a(t) - a(s)) 2. If t/> 2s + 1 we used 
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which follows by comparison with an integral. These two facts and some 
computation lead to (3.79) ~<Ca(2m-K2)I-2~+K(~)(1og L)  y, which goes to zero 
if L goes to infinity because 2 m-K2 = O(log log L). 

Part (i). If  we use similar summation by blocks as in previous proof 
it is not difficult to check that 

~=(AHZ~=(IJt - E(tJI) ) ~ ~Zc' (3.81) 

for some constant c'. 
The Tchebytchev inequality yields 

c'a2 
Pr~ ~(fJl)) ) el(l~ L)~) ~< e~(log L)  2~ (3.82) 

We use here an adaptation of the Chung lemma. As in Step 3 we first 
consider the term where ~K2+1 aK2(L) occnrs" 

O~K 2 

A H ~  = y" 
j=ctK2-- 2 

A [ 4  ( ~:7k2+ 1 ~,~K2+ 1 ~.) ~ K I + I  ISl  - E ( k s k ) )  

it is straightforward that 

E(AHK2)2 ~ c(2 m-K2)~ [(a/%(L) 2) 2m -~213 (3.83) 

Using ar:(L )2 '~-r2 ~> e'L for some constant 0 < c '  < 1 if m is big enough. 
The Tchebychev inequality and the first Borel Cantelli lemma leads to 

1 
lim AH K = 0 almost surely 
Low (log L)  r 

Now we have to prove that 

1 
lim (AHK2 -- AH~;) = 0 almost surely 
L~o~ (log L)  ~ 

Let AHK2=AHt%-AH r. If 2 m ~ L  < L '  ~< 2 m+l -- 1 then 

A~I-Ie2(L ) -- ff~HIf2(L') is independent of ff~Hr2(L ), A~I-Iu:(L -- 1) . . .  A~t/r2(2 m) 

because here also AHr:(L ) and ff~Ht(2(L') are sums of independent random 
variable indexed by crowns of width 2 m-t(2 and since L '  > L the summation 

runs over more terms in AHr:(L') than in AHr2(L ). At this point the proof is 
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exactly the same as the end of the Step 3 with the following modification in 
Lemma 3.3: 

/~j= {IA"~HK2(2 m +j)-A'~HK2(2 r n + l -  1)l ~ gl(1og 2m) y} (3.84) 

Cs= {IA'~HK2( 2m +J)l  >~ 2g,(1og 2m) r} (3.85) 

A2m+I-i = {IA~H,%(2 m+~ -- 1)1/> g~(log 2m) r} (3.86) 

and writing 

Prob(A/m+l_l)/> Prob ( 

instead of (3.74), we get 

C,] U /~ j~  (3.87) 
j = l  

Prob(A2m+,_,)>~ Inf Prob(/~j) Prob d s (3.88) 
l<j~<2m--1 j = l  

Using (3.81) and the Tchebyshev inequality it is straightforward that 

Prob(/~ c) ~< c(log 2 m) -z,  (3.89) 

Therefore (3.88) and (3.89) lead to 

Prob ~< (m log 2) 2y [1 - e(m log 2) -zy] -1 (3.90) 
j = l  

Since 2y > 1, the right-hand side of (3.90) is the general term of a summable 
serie and from the first Borel Cantelli lemma we get the result. 
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